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Comments on Gruber's algorithm. By G. M. WOLTEN, Aerospace Corporation Laboratories, El Segundo, California, 

U .S .A .  
(Received 20 August 1971 ) 

Gruber's algorithm [Gruber, B. (1970) Acta Cryst. A26, 622] for determining the symmetry and stacking 
properties of Bravais-lattice planes can be applied to problems in reciprocal space. 

Gruber (1970) has published an interesting algorithm for 
determining the symmetry and stacking properties of 
Bravais-lattice planes. 

It would seem that the algorithm can be applied to prob- 
lems in reciprocal space as well, with useful results as 
follows. The normal to the direct lattice plane (hkl) is the 
reciprocal axis [hkl]*. From reciprocity, it follows that the 
normal to the reciprocal lattice plane (uvw)* is the direct 
space zone axis [uvw]. Thus, by supplying uvw instead of 
hkl, and reciprocal lattice parameters instead of direct ones 
the algorithm will determine the size and shape of recip- 

rocal lattice planes as seen on precession photographs or 
on thin-crystal electron diffraction patterns. 

The second of the worked-out examples in Gruber 's 
paper contains a misprint. In the value for t3, the ratio 2, 
should read ~-. 

The author has programmed the algorithm in Fortran. 
Copies of the program may be obtained upon request. 
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The.  s tandard  dev ia t ion  o f  the  tors ion  angle .  By R. H. STANFORD JR and Ji3RG WASER,  Gates and Crellin Labora- 
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(Received 12 May 1971) 

Formulas are derived for calculating a torsion angle and its standard deviation. The positions of the four 
atoms defining the torsion angle are assumed to be uncorrelated and the positional standard deviations are 
assumed to be isotropic. 

Given a sequence of four (usually bonded) atoms, 1, 2, 3, 
and 4, whose positions are uncorrelated, and the isotropic 
standard deviations of their positions, formulas are derived 
for the torsion angle about the line between atoms 2 and 3 
and its standard deviation. 

The position of each atom can be represented by: 

r ,=x, i+y, , j+z ,k  (n= 1, 2, 3 or 4) ,  (1) 

where x,, y,, z, are the orthogonalized coordinates of atom 
n, and i, j, and k are the usual Cartesian unit vectors. The 
variances of the atomic positions are assumed to be iso- 
tropic, that is 

0"2(Xn) = 0"2(yn) ---- O"2(Zt,) : 0"~. (2)  
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Define the interatomic vectors: 

r m n = r n - - r m .  (3) 

Then, a vector normal to the plane defined by atoms 1, 2, 
and 3 is: 

tl = r21 x r23, (4) 

and a vector normal to the plane defined by atoms 2, 3, 
and 4 is: 

t2 = r32 × r34.  (5)  

The angle between these normals is the torsion angle, z, 
about the line between atoms 2 and 3, and 

cos T= tx. t2/tlt2. (6) 

(The conventional sign of r is discussed later.) 

Substitution of (1) and (3) into (4) and (5) yields: 

t~= ad + btj + czk ( l= 1 or 2) ,  (7) 

where the coefficients a~, bz, cz are given under '.general co- 
ordinates' in Table 1, 


